
Friendly Conditional Text Generator
Noriaki Kawamae

NTT Comware
kawamae@gmail.com

ABSTRACT
Our goal is to control text generation with more fine-grained con-
ditions at lower computational cost than is possible with current
alternatives; these conditions are attributes (i.e., multiple codes
and free-text). As large-scale pre-trained language models (PLMs)
offer excellent performance in free-form text generation, we ex-
plore efficient architectures and training schemes that can best
leverage PLMs. Our framework, Friendly Conditional Text Genera-
tor (FCTG), introduces a multi-view attention (MVA) mechanism
and two training tasks, Masked Attribute Modeling (MAM) and
Attribute Linguistic Matching (ALM), to direct various PLMs via
modalities between the text and its attributes. The motivation of
FCTG is to map texts and attributes into a shared space, and bridge
their modality gaps, as the texts and attributes reside in different
regions of semantic space. To avoid catastrophic forgetting, learn
modality-free embedded representations, and direct PLMs in this
space, FCTG applies MAM to learn attribute representations, maps
them in the same space as text through MVA, and optimizes their
alignment in this space via ALM. Experiments on publicly available
datasets show that FCTG outperforms baselines over higher level
conditions at lower computation cost.

CCS CONCEPTS
• Computing methodologies → Natural language generation.

KEYWORDS
Conditional Text Generation, Neural Language Model, Neural Lan-
guage Generation, Transformer
ACM Reference Format:
Noriaki Kawamae. 2023. Friendly Conditional Text Generator. In Proceedings
of the Sixteenth ACM International Conference onWeb Search and DataMining
(WSDM ’23), February 27–March 3, 2023, Singapore, Singapore. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3539597.3570364

1 INTRODUCTION
Transformer-based neural language models (NLMs) [11, 22, 31, 39,
46, 51] have demonstrated outstanding performance in a variety of
natural language processing tasks. Among these tasks, text gener-
ation enables computers to create fluent expressions. This task’s
importance has been recognized by both industry and academic
communities as promising [9, 17], who have applied NLMs and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WSDM ’23, February 27–March 3, 2023, Singapore, Singapore.
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9407-9/23/02…$15.00
https://doi.org/10.1145/3539597.3570364

demonstrated their natural language generation (NLG) capabili-
ties. Unfortunately, these pre-trained NLMs (PLMs) are difficult to
control beyond providing prompts for the continuation of the gen-
eration process [6, 7, 28]. At first glance, large-scale PLMs appear
to be a natural fit for NLG since their pre-training objectives are
often derived from language modeling [15].

PLMs generate tokens by simply iteratively sampling the next
token, but many applications demand control of the output to sat-
isfy setting attributes such as the topic, category, and/or author.
For example, consider PLMs being used to generate AI articles for
researchers or the public; the latter require explanations of tech-
nical terms that are well known to the researchers and so plain
terms should be used as much as possible. Although PLMs have
achieved excellent performance in free-form text generation with
promising capabilities, they cannot be directly employed where
text generation must satisfy specific lexical constraints [54]. More-
over, users cannot easily control particular aspects of the generated
text [17]. Once such models are trained, controlling the attributes of
the generated text becomes difficult without modifying the model
architecture to allow for the input of extra attributes or fine-tuning
with attribute-specific data [9, 17, 55], both of which entail the
significant cost of retraining. If we can introduce complex com-
binations of various codes or free-text guide to text generation,
significantly more services and applications will become possible.

Motivated by the above background, we propose Friendly
ConditionalText Generator (FCTG), a simple framework that guides
PLMs to generate text following given conditions. These conditions
are attributes including both free-text and more fine-grained codes
(e.g., product name/category/brand, customer id or various key-
words) than basic codes (e.g., topic field and sentiment). Given
the possibility of 1) interpreting relationships between text and
its attributes as modalities, and 2) bridging the modality gaps to
steer PLMs towards the target domains, we explore how to learn
modality-free representations and apply them in support of con-
trollable generation tasks. These motivations yield our framework,
Friendly Conditional Text Generator (FCTG), a multi-view attention
(MVA) mechanism and the training tasks of Masked Attribute Mod-
eling (MAM) and Attribute Linguistic Matching (ALM). MVA en-
ables FCTG to offer bidirectional attention flow between attributes
and words and project them into the same space which permits the
direct evaluation of their similarity, while steering PLMs without
the problem of catastrophic forgetting [33, 34]; MAM learns repre-
sentations of attributes, while ALM aligns text-level attributes in
the space.

Experiments confirm the advances secured by FCTG’s simple
framework and lower computation cost.
Theoretical contribution: MVA, MAM and ALM allow FCTG
to capture all the interactions among words and attributes, learn
modality-free representations, and steer PLMs to generate text in
compliance with given conditions as shown in 6.5 and 6.6.

420

https://doi.org/10.1145/3539597.3570364
https://doi.org/10.1145/3539597.3570364
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3539597.3570364&domain=pdf&date_stamp=2023-02-27

WSDM ’23, February 27–March 3, 2023, Singapore, Singapore. Noriaki Kawamae

Practical contributions: FCTG can 1) control text generation
with various detailed conditions as shown in 6.4, 2) accommodate
vocabulary growth so as to support new datasets as shown in 6.4,
and 3) leverage PLMs using few parameters and at low computation
cost by using attribute-tuning, as shown in 6.7.

2 PREVIOUS WORK
Recently, pre-trained Transformer [46] based language models [11,
22, 31, 39, 51], PLMs, have yielded great advances in NLP tasks.
They are pre-trained on large-scale unlabeled text corpora, and
then fine-tuned to suit the downstream task. They use a multi-layer
attention mechanism [4] to allow fully-connected self-attention to
the full context in a computationally efficient manner. For example,
they have higher and deeper structures (up to 48 layers in GPT-2)
and are more effective in leveraging large-scale datasets (more than
100 million training instances) than RNN [12] or LSTM [16]-based
approaches. This shared high-level idea has been explored in the
literature for different unsupervised pre-training objectives. Given
an input token sequence, UNIfied pre-trained Language Model
(UniLM) [13] is directed towards natural language understanding
and NLG tasks as it employs a shared Transformer network and
utilizes specialized self-attention masks to control what context the
prediction is conditioned on.

While large-scale Transformer-based models [11, 24, 46, 51]
have shown promising text generation capabilities, they cannot
be directly employed to generate text under specified lexical con-
straints [54]. This architecture does not yet provide sufficient ad-
vantage in text generation [44, 45], and it is difficult for users to
control generation with a view to particular aspects [17]. Although
many of those models are pre-trained on large-scale corpora, they
are limited in specific domains as they either utilize domain-specific
priors or were not designed to generate texts in different domains
or styles. To address this challenge, current controlled text genera-
tion methods either fine tune existing models with Reinforcement
Learning [55], training Generative Adversarial Networks [52], or
train conditional generative models [17]. Conditional Transformer
Language Model for Controllable Generation (CTRL) [17] generates
text conditioned on 50 different control codes. However, these codes
must be predefined which limits flexibility, and are only used once
at the beginning to condition the generation of the rest of the doc-
ument. To address these shortcomings, MEGATRON-CNTRL [50]
adds control to text generation by incorporating an external knowl-
edge base. POINTER [54] operates by progressively inserting new
tokens between existing tokens in a parallel manner. Approaches
based on insertion [43], GAN [10, 47, 52, 53] and Reinforcement
learning [55] have been applied to the text generation task. Pre-
train and Plug-in Variational Auto-Encoder [14] employs VAE [19],
and decouples the text generation module from the condition rep-
resentation module. The Plug and Play Language Model (PPLM) [9]
introduces plugging as a discriminator [36] that combines a PLM
with attribute classifiers that guide text generation.

As text generation tasks involve an enormous output space, it is
often too expensive to curate clean quality data in sufficient quan-
tity and estimate the conditional distribution correctly over many
attributes. OAG-BERT [30] leverages document attributes/meta-
data in a pre-training step. Blending Generative Model (BGM) [28]

enhances GeDi [20] with additional capabilities to support multi-
topic generation with continuous weighting. Although they are
expressive, they are less effective than previous alternatives in con-
trolling generation at specific points. This is due to the prompt’s
influence being negatively correlated with the distance from the
prompt to the next predicted token [56], which makes prompting
for non-adjacent text difficult. Content-Conditioner (CoCon) [7]
incorporates the representations of input content into encoded text
representations.

These studies motivate us to explore simple but effective frame-
works for conditional text generation. Like other NLMs, our task
is formulated as an autoregressive (AR) language model using the
multi-layer Transformer. To allow FCTG to focus on the modality
between attributes and words, a unique capability, we derive MAM,
MVA and ALM; to realize conditioned text generation, and fine-
tune PLMs by adding steerable layers like prompt learning. Unlike
UniLM, MVA allows attributes to attend to linguistic tokens. While
Li and Liang [26] propose prefix-tuning (Prefix) as an alternative to
full fine-tuning for conditional generation tasks, only prefix param-
eters are trainable, FCTG observes both attributes and words, but
trains them using the fewest parameters possible. It differs from
CoCon [7] and NRP [6] in that it controls a greater variety of at-
tention flows automatically, uses continuous and contextualized
representations in training, and updates both attributes and words.

3 PROBLEM FORMULATION
Controllable generation entails modeling that can be formulated
using the conditional distribution % (x|2), concatenating conditions
like the prefix[6, 26], or treating them the context [7], where 2 is
some desired controllable attribute(s) and x the generated sam-
ple. NLMs are trained as conditional language models for spe-
cific tasks that require text generation [5]. Given text sequence
x8 = {G8,1, · · ·, G8, |x8 | } and dataset � = {x1, · · ·, x� }, NLMs perform
pre-training by minimizing the following likelihood under forward
autoregressive factorization:

L!" (\) = −
|� |∑
8=1

|x8 |∑
C=1

log %\ (G8,C |x8,1:C−1), (1)

where \ are the model parameters.
As our approach permits NLMs and PLMs to accept both con-

trol codes and free-text (text description), we call them attributes,
c8,1:0 = {21, · · ·, 20}, and we can extend this equation to:

L��)� (\) = −
|� |∑
8=1

|x8 |∑
C=1

log %\ (G8,C |x8,1:C−1, c8,1:0), (2)

where c8,1:0 denotes the set of |0 | attributes. These attributes could
influence the generation output, x8 , by steering the next token
distribution. Different from CTRL, CoCon, BGM, Prefix, and NRP,
FCTG treats attributes as interpretation instructions rather than
constraints, and detangles the conditional dependencies instead of
learning them independently. To mitigate this restricted formula-
tion, FCTG lets both x1:C and c8,∗ affect GC+1 in parallel at any time
step, while x1:C affects c8,1:0 in training. This paper explores how to
learn these distributions and elucidates its learning framework.

421

Friendly Conditional Text Generator WSDM ’23, February 27–March 3, 2023, Singapore, Singapore.

Figure 1: What is modality? (top) multi-modal search, (bot-
tom) conditional text generation: While multi-modal search
discovers entities across their differences, conditional text
generation forms text by predicting the next word (in purple)
from preceding words and given attributes (in red).

4 FRIENDLY CONDITIONAL TEXT
GENERATOR (FCTG)

4.1 Motivation and Methodology
We explain our motivation, modality of words and attributes (e.g.,
review text and the name, brand, item category, customer id, or
etc.), and its methodology using Figure 1. This modality requires us
to project attributes, texts and words into the same space, where
we can directly measure their semantic similarity. We interpret the
relationship between images and texts in multi-modal search as
the relationship between attributes and texts in controllable text
generation. In this search domain, images and texts are expressed
as embedding vectors, and are placed in the same space such that
their proximity in space becomes semantic proximity. This space
allows search systems to return images closest to the new vector
obtained by conducting algebraic operations over these vectors
(e.g., vec(image) + vec(word)). Applying this insight to controllable
generation tasks, the next word could be predicted by the same op-
eration of the previous words and their attributes, where words and
attributes are also projected as vectors in the same space. Although
attributes and texts reside in different regions of the semantic space,
these attributes can also be seen as a text generation guide. This
analogy propels us to explore how to leverage this modality in
text generation and direct the generated text over attributes, and
develop the Friendly Conditional Text Generator (FCTG). FCTG
encodes both words and attributes, optimizes their representations
in a bidirectional LM, and trains a unidirectional LM to predict the
next word from preceding words and given attributes. This is why
FCTG learns the attributes’ continuous representations instead of
calculating a distribution for each code (e.g., discrete tokens) or
optimizing over them, and can accept more detailed conditions than
alternatives as attributes.

4.2 Architecture of FCTG
We overview our framework in Figure 2, and define a multi-view
attention mechanism (MVA) using a mixture of two different self-
attention masks to capture the modality between each text (words)
and their attributes while preserving the capability of PLMs. The
mechanism allows FCTG to employ a bidirectional LM to encode
attributes, while leveraging a unidirectional LM to generate text.

We introduce MAM and ALM objectives with regard to training
FCTG for the effective fusion of both LMs via MVA.

4.3 Input
FCTG integrates each text with its attributes to form input se-
quences, and feeds them to the Transformer. Here, we add special
tokens [CLS], [EOA], [SEP], and [EOT]. [CLS] token is inserted
only prior to the attributes, and denotes the class of each input unit.
[EOA] token is inserted between the last attribute token and first
word token. [SEP] token is assigned to the end of each sentence
in each input sequence. [EOT] token is assigned only after the last
token in each input sequence. The input embedding layer converts
all tokens (attributes and words) into embeddings, and obtains the
final representation for each token by summing these embeddings.
Attribute Embedding: We can select the tokenizer according to
task or dataset, share their embedding with the linguistic part using
the linguistic tokenizer, and add new tokens in this tokenizer. This
learnable embedding is treated the same as word embedding via
MVA. While we obtain embeddings by utilizing look-up tables as
these attributes have unique embedding values for each attribute
as the initial values, their final representation values are gained
through training. This means that similar attributes have similar
representation values, like word embeddings.
Word Embedding: Like other NLMs, FCTG tokenizes each input
text as the linguistic input of token embedding, where each sub-
word is embedded with Word Piece [49] or another NLMs/PLMs-
specific tokenizer whose length equals the length of its input. Like
attribute embedding, this learnable embedding can be utilized in
common over texts, and their separation distance represents the
closeness of their meanings.
Position/Segment Embedding: A learnable sequence position/seg-
ment embedding is added to every input element indicating its or-
der/segment type in the input sequence, like done in other models.

4.4 Multi-view attention (MVA) and language
models

As MVA aims to turn both the attributes and words into the same
space, and optimize them in training, it unifies attention masks
with different areas. Unlike Transformer-based models [6, 7, 28],
MVA allows attributes to attend to the whole input sequence and
learns their representations by switching masks. Like unidirectional
LMs, FCTG embeds the input sequence, adds positional/segment
encoding to each word token, and decodes the linguistic output in
an auto-regressive way. We denote the embedded inputs as H0 =

[41, · · ·, 4 |G |] of length |G |, and encode them into multiple levels
of contextual representations H; =)A0=B 5 >A<4A (H;−1), ; ∈ [1, !]
using !-stacked Transformer blocks, where the ;-th block is denoted
as H; = [ℎ;,1, · · ·, ℎ;, |G |] and ℎ;, |G | ∈ R3ℎ .

Inside each Transformer block, the previous layer’s outputH;−1 ∈
R |G |×3ℎ is aggregated using multi-head self-attention, and the core
of the block is multi-head attention with heads that use a causal
mask to preclude attending to future tokens by using the scaled

422

WSDM ’23, February 27–March 3, 2023, Singapore, Singapore. Noriaki Kawamae

Figure 2:The architecture of FCTG: FCTG (left) consists of an attribute part encoder (bidirectional LM) withMAM and a linguistic
part decoder (unidirectional LM), and integrates these parts with ALM and (center) MVA. (right) While FCTG uses masked
self-attention (left-to-right) and can adopt PLMs in the linguistic part, it can employ Transformer blocks with self-attention or
a simple Multi-Layer Perceptron in the attribute part. Using PLMs allows FCTG to duplicate its parameters in the linguistic
(red Transformer blocks), where Q0/K0/V0 denotes query/key/value of (solid Transformer blocks).

dot-product attention:

Q = H;−1W
&

;
,K = H;−1W

;
,V = H;−1W+

;
,

�CC4=C8>=(Q,K,V) = B> 5 C<0G (QK
)√

3:

+M)V,

"8 9 =

{−∞ if 8, 9 is the word token and 8 < 9 ,
0 else

,

(3)

where W&

;
,W

;
,W+

;
∈ R3ℎ×3: are learnable weights for comput-

ing the queries, keys, and values, Q,K,V ∈ R |G |×3: , respectively;
3: is the shared dimensionality of the queries and keys. By applying
this formulation in the attribute part, we gain H�

;
∈ R |� |×3ℎ , while

H)
;
∈ R |- |×3ℎ is gained in the text part, where |�| and |- | are the

lengths of attribute and linguistic part, respectively. The attention
mask, M ∈ R |G |× |G | , determines whether a position can attend to
other positions.

To adapt PLMs to this task, it is crucial to correctly employ
attributes and linguistic knowledge (tokens) from NLMs at the
right time. While attributes and linguistic tokens can influence
other tokens like cross-attention, they should exercise influence
only with tokens of the same kind like self-attention. In order to
balance this influence, our MVA unifies two different attention
masks, M2 ∈ R(|� |+|- |)× (|� |+|- |) and MB ∈ R(|� |+|- |)× (|� |+|- |) ,
as illustrated in Figure 2.

This balance is automatically controlled by the gate matrix,
B2 ∈ R(|� |+|- |)× (|� |+|- |) , and determines the relative strengths
of attribute layer, H�

;
, and linguistic layer, H)

;
, on the top of each

layer. Following Eq (3), Q,K,V are gained from H0 ⊕ H! , so MVA
can be defined as:

"+�(Q,K,V) = B2 ⊗ B> 5 C<0G (QK
)√

3:

+M2)V,

+ (1 − B2) ⊗ B> 5 C<0G (QK
)√

3:

+MB)V,

B2 = f (A)I(f (A) > `),A = [H0 ⊕ H!]W1 + C1 ,

"2 (8, 9) =
{−∞ if 8, 9 is the linguistic token and 8 < 9 ,

0 else
,

"B (8, 9) =


−∞ if 8, 9 are not the same token type

or if 8, 9 is the linguistic token and 8 < 9 ,
0 else

,

(4)

where ⊗ denotes component-wisemultiplication, andW1 ∈ R3ℎ×(|� |+|- |)

and C1 ∈ R(|� |+|- |)× (|� |+|- |) are learnable weights, ` is gate
threshold value, and I is the indicator function that returns 1 if the
inner statement is true and 0 otherwise. This function aims to miti-
gate overfitting by suppressing small values and inducing sparse
activation. It applies bidirectional attention between attributes and
words, where, "∗ (8, 9) ∈ M∗ = 0 allows the 8-th position to at-
tend to the 9-th position and "8 9 = −∞ prevents it from attending.
MVA makes each attribute token attend to all tokens in the input
sequence via M2 , and restricts each word token to attend to the
word tokens in the previous position within the same sequence
(left-to-right) and attribute tokens. Thus FCTG represents both at-
tributes and words in the same space, and feeds "+�(Q,K,V) to a
feedforward layer with ReLU activation [35]. FCTG projects inputs
to an inner dimension, 5 , with layer normalization [3] to compute
H; for the next layer, which generates text over arbitrary attributes.

The output of the final pointwise feed-forward layer goes through
a final linear layer that acts as a classifier. As temperature-controlled
stochastic sampling can generate text from trained NLMs, FCTG
applies this approach to the output of MVA, H"+� , and samples
the next token according to the probability:

X = !0~4A#>A<(H"+�)W2 , ? (F8) =
4G? (G8/))∑
8 4G? (G8/))

, (5)

where W2 ∈ R3ℎ×+ is the learnable weight, + is vocabulary size,
) > 0 is temperature, and G8 ∈ X is the score of the 8-th token in
the vocabulary. The next token is chosen by sampling on a multi-
nomial distribution with probabilities clipped at the top-: tokens.
While) → 0 approximates a greedy distribution, which magni-
fies the peaks in the probability distribution,) → ∞ flattens the
distribution and makes it more uniform.

That is, MVA allows FCTG to accept new attributes as its con-
ditions, turn them into continuous vector representations, update
attribute representation by attending to other attributes and its
text’s representation in the training phase.

5 MODEL TRAINING
Our training consists of two tasks: Masked Attribute Modeling
(MAM) and Attribute Linguistic Matching (ALM). These tasks ex-
plicitly examine the impact of attributes on modality, and ensure
that the decoder focuses on both the attributes and the text (words).

423

Friendly Conditional Text Generator WSDM ’23, February 27–March 3, 2023, Singapore, Singapore.

5.1 Masked Attribute Modeling (MAM)
As the attribute part of FCTG is a bidirectional LM, we can optimize
this part’s output by applying cross-entropy loss. As an alternative
objective, we propose that MAMmaximize the likelihood of masked
attributes given context to reconstruct these attributes. MAMmakes
this context include both other attributes (if any) and text in the
same input sequence.We denote the linguistic input aswj = {wj,1, ··
·,wj,i}, associated attributes as aj = {aj,1, · · ·, aj,i}, and the mask
index as< ∈ N" . In this training, we randomly mask out the input
attributes with probability of 15%, and replace the masked attribute
aj,m with a special token [MASK], where we select input with the
probability of 15% over the same attribute to avoid sample bias.
FCTG is trained to predict these masked attributes using context
wj and other attributes aj,\m, by minimizing the log-likelihood as
follows:

L"�" (Z) = −� (0 9,<,wj)∼D;>6%Z (0 9,< |aj,\m,wj) (6)

where Z indicates trainable parameters. Each pair (0 9,<,wj) is sam-
pled from the whole training set D. This function also employs
categorical cross-entropy loss as used in other LMs.

5.2 Attribute Linguistic Matching (ALM)
As attributes and texts usually correspond to different domains,
which may preclude effective cooperation without their coordina-
tion, ALM learns sequence-level alignment (rather than linguis-
tic/attribute token-level alignment) between all attributes and the
text. Given the pair of a text and corresponding attributes as input,
the objective here is to predict whether the text can be semantically
matched with the attributes. The first solution is to introduce con-
structive learning tasks, with the aim of aligning the modalities into
the same space by minimizing their contrastive loss between the
attribute embedding and the text embedding. While we can make
each attribute and text vector, and its 8-th pair, < v |� |,8 , v |) |,8 >, by
computing the mean or max-over-time of all output vectors in each
part (final hidden representation H! or embeddings), we adopt the
best, the mean of H�

!
and H)

!
, in our comparison experiment. Next,

we formalize the attribute embedding and the text embedding as

L"�" (Z) = −
B∑
1=1

∑
8∈1

log
exp(v |� |,8 · v |) |,8/g)∑

:∈1\9 exp(v |� |,8 · v |) |,:/g)
, (7)

where B is each batch, :-th text is regarded as the negative text in a
batch, B, and g is a temperature parameter. We can employ various
texts as negative texts by constructing each batch randomly.

As an alternative, we propose a triplet objective-based function
to evaluate them by similarity rather than correctness. Given anchor
attribute embedding, v0 , positive text embedding, v? , and negative
embedding, v= , triplet loss tunes the model such that the distance
between v0 and v? is smaller than the distance between v0 and
v= . Mathematically, this objective minimizes the following loss
function:

L"�" (Z) =
B∑
1=1

max
(v0,v? ,v=)∼1

(| |v0 − v? | | − | |v0 − v= | | + n, 0), (8)

where v0 and v?,= are also obtained by averaging H�
!
and H)

!
, v?

corresponds to v0 , and v= a different text in the same batch. | | • | |
is a distance metric and n is the margin that ensures that ep is at

least n closer to ea than en. Although the sampling targets are batch
units, the same policy employed in Eq (7) is used to avoid bias.

Finally, we add an alternative of this triplet objective to reduce
the computation cost.This objective selects only text with minimum
distance, | |v0 − v= | |, as the only negative sample for 8-th attribute
in Eq (8).

We call the constructive, the triplet and the minimum triplet,
CN, TR, and MTR, respectively, and compare them in an ablation
analysis.

5.3 Optimization
We have two training regimes corresponding to the attribute-text
inputs, and formulate the final pre-training objective as the sum of
these objective functions (Eq (2),(6),(7/8)):

L = _�L��)� (\) + _"L"�" (Z) + _�L�!" (Z), (9)

where _∗ are hyper parameters to balance the importance of the
three functions. As with parameter update, we use Adaptive Mo-
ment Estimation (Adam) [18] over mini-batches, and adopt the
dropout strategy [42] to optimize networks.

5.4 Fine-Tuning or Attribute-tuning
As the data used in pre-training is likely to be different from the
data used in fine-tuning, and PLMs are employed, we can use the
pre-trained parameters for initialization, and establish a fine-tuning
process using the given data set. To project attributes, words and
newly appearing words/attributes tokens in the same space, we op-
timize the objective function defined in Eq (9) where the evaluation
uses attribute-text pairs sampled from the attribute-text pairs in
this fine-tuning process.

Here, we propose attribute-tuning as an alternative to full fine-
tuning for conditional generation tasks to reduce computation costs,
see Figure 2. Instead of optimizing over all queries, keys, and values,
Q,K,V, we optimize only the parameter of the attribute part and
the top layer of PLMs, Q0,K0,V0 , as the effects of this optimization
will propagate upward to all Transformer activation layers.

As shown in Figure 2, Eq (3) and (9), this approach enables us to
freeze most parameters learned in PLMs, and learn only parame-
ters Q0,K0,V0 in the fine-tuning phase. This not only reduces the
computation cost, but allows for the easy adoption of PLMs.

6 EXPERIMENTS
6.1 Datasets and Experiment design
Datasets We conducted evaluations using the Amazon review
data sets1 and arXiv Dataset2, as they are large publicly available
datasets. As this data has multiple attributes and is suitable for
evaluating models for conditional text generation, we use it in our
experiments and comparisons. The corpus is balanced across stars,
so each star rating constitutes 20% of the reviews in each language.
For each language, there are 200,000, 5,000 and 5,000 reviews in
the training, validation and test sets, respectively. The final per-
formance comparison results are derived from the test set. We set
the minimum number of reviews per reviewer and product to 20,
which yielded 2,311 customer IDs and 2,381 product IDs; the other
1https://huggingface.co/datasets/amazon_reviews_multi
2https://huggingface.co/datasets/arxiv_dataset

424

https://huggingface.co/datasets/amazon_reviews_multi
https://huggingface.co/datasets/arxiv_dataset

WSDM ’23, February 27–March 3, 2023, Singapore, Singapore. Noriaki Kawamae

Table 1: Basic statistics: In #attributes, each value denotes
#unique customers/products (Amazon) and tokenized title
(arXiv).

Dataset #texts #attributes #vocabulary
Amazon 210,000 2,311+2,381 246,534
arXiv 1,506,500 25,112 565,762

reviewers and products are grouped to yield one reviewer and one
product. All reviews are truncated after 2,000 characters, and all
reviews are at least 50 characters long; we use only English to ease
interpretation of the results. We apply the same pre-treatment to
arXiv Dataset and the statistics of the resulting data set are shown
in Table 1, where 25,112 words are attributes. For Amazon data,
we use anonymized reviewer ID and anonymized product ID as at-
tributes, and made the models generate reviews according to given
IDs. For arXiv data, we tokenize “paper title” into words and use
these words as attributes to generate “paper abstract”, and made
the models generate abstracts according to given tokenized title.
Therefore, the attributes of Amazon and arXiv, are to be seen as set
of codes and free-text, respectively.

Experimental Setup We implemented FCTG using Pytorch
1.93; many parameters were set to their baseline values for fair
comparison. While the attribute part of FCTG consists of 6 trans-
former blocks with 1280/1024 hidden size to utilize CTRL/GPT-2-
medium/GPT-2-large/GPT-NeoX as the pre-trained models, with
12 attention heads, the linguistic part of FCTG places only one
transformer block on top of these pre-trained models, where the
weight matrix of the softmax classifier was tied to token/attribute
embeddings (MAM, ALM), and _� , _" , and _� of Eq (9) were set
to 1, 0.1, and 0,1, respectively.

As with Transformer training, we ran the models for 50 epochs
using Adamwith V1 = 0.9; V2 = 0.999 was used for optimization, over
mini-batches to update parameters; the dropout strategy [42] was
adopted for network optimization. The learning rate was 3e-5, with
linear warmup over the first 100 steps and linear decay, where we
set the dropout rate, the weight decay, the maximum length of input
sequence, and the batch size to 0.1, 0.01, 50(Amazon)/200(arXiv),
and 16, respectively. As with other Transformer-based models, we
use publicly available models4, and follow the published parameter
settings for fair comparison. We fine-tuned all models on 8 Nvidia
Tesla V100 GPUs with 256G memory.
Experiment design Our experimental objective is to investigate
the following research questions.

• RQ#1 How do the results of FCTG compare to those of other
models?

• RQ#2 How much do MVA, MAM, and ALM contribute to
FCTG performance?

• RQ#3 Does FCTG offer controllable text generation?
• RQ#4 Does attribute-tuning lower the computation cost of

FCTG training?

3https://pytorch.org/
3https://huggingface.co/transformers/pretrained_models.html
4https://github.com/huggingface/transformers,https://github.com/uber-
research/PPLM,https://github.com/xxbidiao/plug-and-blend,https://github.com/alvin-
changw/COCON_ICLR2021,https://github.com/FreddeFrallan/Non-Residual-
Prompting,https://github.com/XiangLi1999/PrefixTuning

6.2 Baselines
Since our model can adopt pre-trained NLMs, it incorporates state-
of-the-art NLMs, CTRL, GPT2 [39] and GPT-NeoX [1]. As the main
goal of our model is to control text generation, we use the latest
NLMs sharing the same goal as our baselines and omit the results of
WD [41], T-CVAE [48], PPVAE [14], PPLM [9] and BGM[28] due to
space constraints and show the results of GPT-2 after te fine-tuning
them over the same datasets.

6.3 Evaluation Metrics
We evaluate two characteristics: whether FCTG generates text that
satisfies the desired attributes and whether text quality deteriorates
as we intensify attribute control.

Automated evaluation. While perplexity is a well-known auto-
mated measure of fluency, its effectiveness in open-domain text gen-
eration has been questioned [29]. As this task is a kind of language
model evaluation, we use the frequently used test-set perplexity,
BLEU [38], METEOR [23], ROUGE [27] using the Hugging Face
Metrics5. The diversity of text in the passages is measured using
the number of distinct =-grams (normalized by the length of text)
as in Li et al. [25]. BLEU [38] is used to evaluate how many =-grams
in the generated text overlap with those in the reference text. ME-
TEOR aligns the output text to the reference text and calculates
sentence-level similarity scores for the alignments. ROUGE was
proposed for evaluating summarization systems, and proceeds by
comparing overlapping =-grams, word sequences and word pairs.

Human evaluation. We consider two types of human anno-
tation [9]: topic and fluency testing on attribute relevance. Topic
reports the fraction of samples matching the target topic (attributes)
as evaluated by human annotators. Annotators were asked to eval-
uate the fluency of each individual sample on a scale of 1-5, with 1
being “not fluent at all” and 5 being “very fluent” as done in [21].
To be able to consistently evaluate the generated reviews or ab-
stracts, we recruited and screened colleagues who could interpret
both reviews and papers, where annotations correspond to unique
attributes (i.e., user, product ID and paper title).

6.4 Text generation task (RQ#1)
For evaluating controllable text generation, we set the maximum
length of generated text to 50(Amazon)/200(arXiv) for all models;
only the best three models are shown in Table 2. To yield fair com-
parisons against the other baseline methods, we follow the settings
of recent comparisons [9]. Note that the ground truth texts were
excluded from training/validation data to prevent the leak of infor-
mation. For most of the datasets, FCTG outperformed the baselines
and achieved better performance when the number of attributes
was large. These results can be explained by FCTG bridging the
modality gap between attributes and words. This advance enables
FCTG to learn the relationship between attributes and words, and
map them in the same semantic space; the other models deal with at-
tributes individually and derive distributions for each attribute.This
is why FCTG achieved better performance than the others, where a
new code (IDs) appears in the fine-tuning phase. Our representation
allows multiple attributes to express contextual interdependence
between attributes and words, which prevents sparsification of the
5https://huggingface.co/docs/datasets/how_to_metrics

425

https://huggingface.co/transformers/pretrained_models.html

Friendly Conditional Text Generator WSDM ’23, February 27–March 3, 2023, Singapore, Singapore.

Table 2: Comparison of various text generation models: In this table, ��)� adopts GPT-2, CTRL, and GPT-NeoX as PLMs, sets
` in Eq (4) to 0.5, and applies CE, and CN to MAM, and ALM as Eq (6,7), where we leave FCTG with GPT-NeoX out for a fair
comparison. In each model, attributes (the lower row) are a pair of user ID and product ID (Amazon) and each tokenized title
(arXiv; avg 11.5). Flu, PPL, and B-# denote Fluency, Perplexity, BLEU-# , respectively. The values in bold show best performance,
where the bold value denotes the statistical significance for ? < 0.01, compared to the best baseline.

Model Amazon arXiv
Flu PPL B-4 Meteor Rouge-L Flu PPL B-4 Meteor Rouge-L

P R F1 P R F1
↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑

GPT-2 3.16 16.67 0.12 0.19 0.09 0.08 0.08 3.16 7.24 0.10 0.28 0.19 0.29 0.23
Prefix [26] 3.19 16.21 0.14 0.20 0.09 0.09 0.09 3.03 7.12 0.11 0.29 0.21 0.22 0.21
NRP [6] 3.19 15.86 0.13 0.21 0.09 0.09 0.09 3.03 7.02 0.11 0.30 0.23 0.22 0.22

COCON [7] 3.17 15.93 0.13 0.21 0.09 0.09 0.09 3.03 6.88 0.11 0.29 0.24 0.23 0.23
��)� 3.95 13.83 0.26 0.28 0.14 0.13 0.13 3.78 2.70 0.14 0.31 0.31 0.28 0.29

Table 3: Ablation analysis of FCTG on the Amazon data set: In this table, PPL denotes Perplexity. In MAM and ALM, TR/CE
denote triplet/cross-entropy in Eq (6,7,8). In the columns of Rouge-L, %, ', and � are precision, recall, and F1, respectively.

Data Amazon arXiv
components PPL B-4 Meteor Rouge-L PPL B-4 Meteor Rouge-L

MVA MAM ALM P R F1 P R F1

` = 0.8 CE TR 14.91 0.26 0.26 0.15 0.11 0.13 3.28 0.13 0.30 0.29 0.27 0.28
` = 0.5 CE TR 14.88 0.27 0.26 0.14 0.12 0.13 3.24 0.13 0.30 0.28 0.28 0.28
` = 0 CE CN 14.56 0.26 0.27 0.14 0.13 0.13 3.23 0.13 0.30 0.29 0.28 0.28
` = 0 CE TR 13.83 0.26 0.28 0.14 0.13 0.13 2.70 0.14 0.31 0.31 0.28 0.29
` = 0 CE MTR 14.38 0.25 0.27 0.14 0.13 0.13 3.46 0.13 0.30 0.29 0.28 0.28
` = 0 w/o TR 14.22 0.22 0.26 0.13 0.11 0.12 3.83 0.13 0.30 0.27 0.28 0.28
F/> TR TR 14.84 0.19 0.24 0.11 0.11 0.11 4.32 0.12 0.29 0.25 0.27 0.26

available data for learning. Hence, while variations of FCTG achieve
better results than other models, we compared the best model in
the benchmark with the best of these variations for each evaluation,
and confirmed statistically significant benefits.

A manual error analysis showed that some instances marked as
errors were in fact assessed correctly if partial matching of words
in a text is allowed. In practice, failure was possible if the ground
truth texts had many abbreviations or free contexts that were not
syntactically correct.

6.5 Ablation analysis (RQ#2)
To investigate the individual contributions of FCTG’s components
to its overall performance, we conducted an ablation analysis. We
removed different components and the resulting text generation
quality is shown in Table 3, where both Topic and Flu show no
significant differences, and are not included due to space limitations.
As proposed in 5.2, we evaluated attribute-tuning in this task.

Table 3 shows that the setting with all components yields better
controllable text generation across the datasets examined. To learn
the modality between attributes and words, we proposed MVA,
MAM and ALM as training tasks and these results confirm their
effectiveness. If MVA was not used, bidirectional/left-to-right self-
attention was applied to the attribute/linguistic part. These results
show that the effect of MVA is so significant that it could not be
replaced by the conventional self-attention strategy, where each
attribute is used for conditional text generation. While MAM is
introduced to discover the modality between attributes and word

at the token level, ALM is designed to learn the modality between
attributes and text at the input sequence level. This table shows
that the addition of MAM yields better results than PPL, ALM with
TR is more likely to show up in these results, but we manually
confirmed its effectiveness with respect to the consistency of the
generated sentences. As Transformer models need huge numbers of
parameters that must be updated in fine-tuning, FCTG applies only
attribute-tuning (partial update) Q0,K0,V0 rather than the full one,
Q,K,V. This attribute-tuning update strategy offers performance
comparable to that achieved with full update, Q,K,V. The reason
why attribute-tuning has such a larger impact on accuracy than the
others is that it is also directly used in MAM and ALM. This hypoth-
esis is supported by the results achieved when MVA is excluded,
i.e., attribute and text are updated independently. A comparison of
update strategies reveals it’s effectiveness, although it does depend
on the quality and quantity of pre-training and fine-tuning data.

6.6 Case study of generated text (RQ#3)
Table 4 shows an example of the reviews generated from the Ama-
zon dataset by the baseline models, where the bold words in each
text are attribute-specific words. Since COCON uses GPT-2, CO-
CON generates text that is similar to that produced by GPT-2. Since
FCTG also uses GPT-2 and CTRL as its PLMs, FCTG also generates
text similar to the text generated by these models. While differences
are seen at the sentence level rather than the word level, the texts
generated by FCTG include more bold words than the texts of the
other models. As FCTG contains many attribute-specific words, it

426

WSDM ’23, February 27–March 3, 2023, Singapore, Singapore. Noriaki Kawamae

Table 4: Case study of texts generated using Amazon data: We used the same product ID (PID), customer ID (CID) and seed
words ”I love this movie because” for fair comparison, and show the text generated by each model, where the bold emphasis
denotes the top 20 most frequent words in the corresponding attributes.

GPT-2 PID:CID:[I love this movie because] I can see it as an actual movie that shows what your dreams are like.
CTRL PID:CID:[I love this movie because] this movie in my opinion is not just an unrealistic picture I know

COCON PID:CID:[I love this movie because] I can see it as a very real movie that shows what his work is to,
GPT-2+p PID:CID:[I love this movie because] I can see it as a movie that shows what I expect to see and what

FCTG(+GPT-2) PID:CID:[I love this movie because] I can see it is an exciting movie that shows who your superhero is
FCTG(+CTRL) PID:CID:[I love this movie because] this movie has a lot of action and is thrilling in every sense and I

Table 5: Runtime comparison in fine-tuning over (upper)
Amazon and (lower) arXiv: In this table, the value is the
average wall time of each epoch.

CTRL FCTG GPT2+p NRP COCON FCTG
(+CTRL) (+GPT2)

36.4m 4.2m 6.8m 7.3m 9.7m 3.5m
73.2m 6.5m 8.7m 11.5m 17.2m 4.8m

captures the modalities between attributes and words and reflects
them in text generation, as stated in 4.1.

6.7 Runtime (RQ#4)
While FCTG employs CTRL and GPT-2(PPLM) as its PLMs, it uti-
lizes just their final hidden states, not the entire model. That is, we
construct FCTG with fewer stacked Transformer blocks, 6, than the
others (CTRL and PPLM with GPT-2) which use 48 and 24 stacked
Transformer blocks), respectively. Thus it needs fewer parameters
and less memory, while achieving nearly the same performance. Al-
though the block size of FCTG appears to be small, the well-known
denoising autoencoder based text generation model, BART [24],
has almost the same size and achieves new state-of-the art results
on question answering and summarization tasks. If the number
of Transformer blocks is kept the same, FCTG converges faster
with higher accuracy, although its number of parameters increases
slightly (M2 ,MB ,B2 ,W1 ,C1 in Eq 4)

7 DISCUSSION
The difference between a prefix word and an attribute is that the
prefix word cannot refer to words appearing after it in the autore-
gressive language model, whereas an attribute can attend to words
associated with that attribute over the whole sentence. This differ-
ence supports the validity of MVA with different masks, as shown
in 6.5. Because attributes are related to the set of words rather than
their order in each input sequence, the attention mask of MVA is
asymmetric and the effectiveness on the conditional text generation
task was confirmed in the experiments. This is why we call these
attributes text generation controllers.

The effect of including modalities is to make text generation
tasks easier to interpret by analogy with multi-modal search; They
are made to play the role of an “information seeker” (query) and an
“information provider” (key-value). As explained in 6.4, modality
ensures that FCTG can map attributes and words into the same
semantic space where the proximity of the distance between at-
tributes and words reflects their semantic proximity, allowing us to
directly define their similarity. By focusing on the similarities of

attributes rather than on their independence, FCTG can share texts
related to attributes among similar attributes, and learn the seman-
tic relationship between attributes and words more accurately than
GPT2 with prefix-tuning [26]. As shown in the ablation analysis,
training FCTG through attribute-tuning reduces computation cost.

The second feature is the ability to generate text according
to a consistent set of features, even when multiple features are
combined or swapped. The benefit of FCTG lies in performing
encoder-decoder equivalent processing with fewer parameters by
applying MVA to the decoder, and this might also apply to other
encoder-decoder transformer stacks [24, 40] or LSTM based mod-
els [2, 8, 32, 37, 44, 45].

Our framework can not only accept both multiple codes and
free-text as conditions, but can also easily accommodate vocabu-
lary growth. For example, customer IDs or paper author names
as attributes will appear as new ”words” every day, and make the
vocabulary explode. In fact, even in the data sets we used, these
words were not tokenized or included as intended in PLMs. FCTG
tokenized them as attributes, obtained their representations via
fine-tuning, and applied them to control text generation.

The problem of catastrophic forgetting is inevitable when train-
ing PLMs, but FCTG alleviates this issue by steering PLMs only at
their top layer, introducing MVA with balancing weight B2 , and
attribute-tuning. Although we could not evaluate that this compo-
nent and tuning directly resolved this issue, we can say that they
can preserve the parameters of PLMs, adapt the target’s domain
knowledge to their language generation capabilities, and control
text generation with regard to its attributes.

8 CONCLUSION
To improve the performance of controllable text generation, this
paper proposed FCTG; it focuses on the modality of words and at-
tributes in each text, and projects their embedding representations
into the same space. This understanding led to the derivation of
MVA as the mechanism, and the introduction of MAM and ALM
as training models. Different from previous conditional text gener-
ation models and frameworks, FCTG can readily accept a greater
variety of attributes and treat these attributes as words rather than
constraints. Experiments on publicly available datasets showed that
these newly proposed components help FCTG to outperform base-
lines in conditional text generation tasks, and generate texts that
satisfy multiple attributes more easily than existing alternatives.
We will extend and apply this framework to dialogue generation,
prompt tuning, RAG, and image captioning tasks.

427

Friendly Conditional Text Generator WSDM ’23, February 27–March 3, 2023, Singapore, Singapore.

REFERENCES
[1] Alex Andonian, Quentin Anthony, Stella Biderman, Sid Black, Preetham Gali,

Leo Gao, Eric Hallahan, Josh Levy-Kramer, Connor Leahy, Lucas Nestler, Kip
Parker, Michael Pieler, Shivanshu Purohit, Tri Songz, Wang Phil, and Samuel
Weinbach. 2021. GPT-NeoX: Large Scale Autoregressive Language Modeling in
PyTorch. https://doi.org/10.5281/zenodo.5879544

[2] Anonymous Author(s). -. Adjustable Personalized Review Generation from
Multiple Views. In Unpublished. -, –.

[3] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normaliza-
tiong. CoRR abs/1607.06450 (2016).

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[5] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003.
A Neural Probabilistic Language Model. J. Mach. Learn. Res. 3 (Mar 2003),
1137–1155.

[6] Fredrik Carlsson, Joey Öhman, Fangyu Liu, Severine Verlinden, Joakim Nivre,
and Magnus Sahlgren. 2022. Fine-Grained Controllable Text Generation Using
Non-Residual Prompting. In ACL. 6837–6857.

[7] Alvin Chan, Yew-Soon Ong, Bill Pung, Aston Zhang, and Jie Fu. 2021. CoCon: A
Self-Supervised Approach for Controlled Text Generation. In ICLR.

[8] Zhongxia Chen, Xiting Wang, Xing Xie, Tong Wu, Guoqing Bu, Yining Wang,
and Enhong Chen. 2019. Co-Attentive Multi-Task Learning for Explainable
Recommendation. In IJCAI. 2137–2143.

[9] Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero
Molino, Jason Yosinski, and Rosanne Liu. 2020. Plug and Play Language Models:
A Simple Approach to Controlled Text Generation. In ICLR.

[10] Cyprien de Masson d’Autume, Shakir Mohamed, Mihaela Rosca, and Jack W. Rae.
2019. Training Language GANs from Scratch. In NeurIPS. 4302–4313.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACLM. 4171–4186.

[12] Adji B. Dieng, Chong Wang, Jianfeng Gao, and John William Paisley. 2016. Top-
icRNN: A Recurrent Neural Network with Long-Range Semantic Dependency.
CoRR abs/1611.01702 (2016).

[13] Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jian-
feng Gao, Ming Zhou, and Hsiao-Wuen Hon. 2019. Unified Language Model
Pre-training for Natural Language Understanding and Generation. In NeurIPS.
13042–13054.

[14] Yu Duan, Canwen Xu, Jiaxin Pei, Jialong Han, and Chenliang Li. 2020. Pre-
train and Plug-in: Flexible Conditional Text Generation with Variational Auto-
Encoders. In ACL. 253–262.

[15] Sergey Golovanov, Rauf Kurbanov, Sergey Nikolenko, Kyryl Truskovskyi, Alexan-
der Tselousov, and Thomas Wolf. 2019. Large-Scale Transfer Learning for Natural
Language Generation. In ACL. 6053–6058.

[16] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (1997), 1735–1780.

[17] Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and
Richard Socher. 2019. CTRL: A Conditional Transformer Language Model for
Controllable Generation. CoRR abs/1909.05858 (2019).

[18] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR.

[19] Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In
ICLR.

[20] Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar,
Shafiq R. Joty, Richard Socher, andNazneen Fatema Rajani. 2021. GeDi: Generative
Discriminator Guided Sequence Generation. In EMNLP. 4929–4952.

[21] Guillaume Lample, Sandeep Subramanian, Eric Smith, Ludovic Denoyer, Marc’Au-
relio Ranzato, and Y-Lan Boureau. 2019. Multiple-Attribute Text Rewriting. In
ICLR.

[22] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, and etc. 2020. ALBERT: A
Lite BERT for Self-supervised Learning of Language Representations. In ICLR.

[23] Alon Lavie and Abhaya Agarwal. 2007. METEOR: An Automatic Metric for
MT Evaluation with High Levels of Correlation with Human Judgments. In
Proceedings of the SecondWorkshop on Statistical Machine Translation, WMT@ACL
2007. 228–231.

[24] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, and et al. 2019. BART: Denoising Sequence-to-Sequence Pre-training
for Natural Language Generation, Translation, and Comprehension. CoRR
abs/1910.13461 (2019).

[25] Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. 2016. A
Diversity-Promoting Objective Function for Neural Conversation Models. In
NAACL. 110–119.

[26] Xiang Lisa Li and Percy Liang. 2021. Prefix-Tuning: Optimizing Continuous
Prompts for Generation. In ACL/IJCNLP. 4582–4597.

[27] Chin-Yew Lin. 2004. Rouge: a package for automatic evaluation of summaries. In
ACL-workshop. 25–26.

[28] Zhiyu Lin and Mark O. Riedl. 2021. Plug-and-Blend: A Framework for Plug-and-
Play Controllable Story Generation with Sketches. In AAAI. 58–65.

[29] Chia-Wei Liu, Ryan Lowe, Iulian Serban, Michael Noseworthy, Laurent Charlin,
and Joelle Pineau. 2016. How NOT To Evaluate Your Dialogue System: An
Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response
Generation. In EMNLP. 2122–2132.

[30] Xiao Liu, Da Yin, Xingjian Zhang, Kai Su, Kan Wu, Hongxia Yang, and Jie Tang.
2021. OAG-BERT: Pre-train Heterogeneous Entity-augmented Academic Lan-
guage Models. CoRR abs/2103.02410 (2021).

[31] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. CoRR abs/1907.11692 (2019).

[32] Chen Ma, Peng Kang, Bin Wu, Qinglong Wang, and Xue Liu. 2019. Gated
Attentive-Autoencoder for Content-Aware Recommendation. InWSDM. 519–527.

[33] Michael Mccloskey and Neil J. Cohen. 1989. Catastrophic Interference in Connec-
tionist Networks: The Sequential Learning Problem. The Psychology of Learning
and Motivation 24 (1989), 104–169.

[34] Fei Mi, Liangwei Chen, Mengjie Zhao, Minlie Huang, and Boi Faltings. 2020.
Continual Learning for Natural Language Generation in Task-oriented Dialog
Systems.. In EMNLP. 3461–3474.

[35] Vinod Nair and Geoffrey E. Hinton. 2010. Rectified Linear Units Improve Re-
stricted Boltzmann Machines. In ICML. 807–814.

[36] Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, and Jason Yosinski.
2017. Plug & Play Generative Networks: Conditional Iterative Generation of
Images in Latent Space. In CVPR. 3510–3520.

[37] Jianmo Ni and Julian McAuley. 2018. Personalized Review Generation By Expand-
ing Phrases and Attending on Aspect-Aware Representations. In ACL. 706–711.

[38] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a
Method for Automatic Evaluation of Machine Translation. In ACL. 311–318.

[39] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. (2019).

[40] Colin Raffel, Noam Shazeer, Adam Roberts, and et.al. 2020. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach. Learn.
Res. 21 (2020), 140:1–140:67.

[41] Abigail See, Stephen Roller, Douwe Kiela, and Jason Weston. 2019. What makes
a good conversation? How controllable attributes affect human judgments. In
NAACL-HLT. 1702–1723.

[42] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. J. Mach. Learn. Res. 15, 1 (2014), 1929–1958.

[43] Mitchell Stern, William Chan, Jamie Kiros, and Jakob Uszkoreit. 2019. Insertion
Transformer: Flexible Sequence Generation via Insertion Operations. In ICML.
5976–5985.

[44] Peijie Sun, Le Wu, Kun Zhang, Yanjie Fu, Richang Hong, and Meng Wang. 2020.
Dual Learning for Explainable Recommendation: Towards Unifying User Prefer-
ence Prediction and Review Generation. In WWW. 837–847.

[45] Quoc-Tuan Truong and Hady Lauw. 2019. Multimodal Review Generation for
Recommender Systems. In WWW. 1864–1874.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, and etc. 2017. Attention Is All You
Need. In NIPS. 5998–6008.

[47] Ke Wang and Xiaojun Wan. 2018. SentiGAN: Generating Sentimental Texts via
Mixture Adversarial Networks. In IJCAI-18. 4446–4452.

[48] Tianming Wang and Xiaojun Wan. 2019. T-CVAE: Transformer-Based Condi-
tioned Variational Autoencoder for Story Completion. In IJCAI. 5233–5239.

[49] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, and et. al. 2016. Google’s
Neural Machine Translation System: Bridging the Gap between Human and
Machine Translation. CoRR abs/1609.08144 (2016).

[50] Peng Xu, Mostofa Patwary, Mohammad Shoeybi, Raul Puri, Pascale Fung, Anima
Anandkumar, and Bryan Catanzaro. 2020. MEGATRON-CNTRL: Controllable
Story Generation with External Knowledge Using Large-Scale Language Models.

[51] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdi-
nov, and Quoc V. Le. 2019. XLNet: Generalized Autoregressive Pretraining for
Language Understanding. In NIPS. 5754–5764.

[52] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. 2018. SeqGAN: Sequence
Generative Adversarial Nets with Policy Gradient. In AAAI. 2852–2858.

[53] Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi,
Franziska Roesner, and Yejin Choi. 2019. Defending Against Neural Fake News.
In NeurIPS. 9051–9062.

[54] Chengkun Zhang and Junbin Gao. 2020. Hype-HAN: Hyperbolic Hierarchical
Attention Network for Semantic Embedding. In IJCAI. 3990–3996.

[55] Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford,
Dario Amodei, Paul Christiano, and Geoffrey Irving. 2019. Fine-Tuning Language
Models from Human Preferences. CoRR abs/1909.08593 (2019).

[56] Xu Zou, Da Yin, Qingyang Zhong, Hongxia Yang, Zhilin Yang, and Jie Tang.
2021. Controllable Generation from Pre-Trained Language Models via Inverse
Prompting. In KDD. 2450–2460.

428

https://doi.org/10.5281/zenodo.5879544

	Abstract
	1 INTRODUCTION
	2 PREVIOUS WORK
	3 Problem Formulation
	4 Friendly Conditional Text Generator (FCTG)
	4.1 Motivation and Methodology
	4.2 Architecture of FCTG
	4.3 Input
	4.4 Multi-view attention (MVA) and language models

	5 Model Training
	5.1 Masked Attribute Modeling (MAM)
	5.2 Attribute Linguistic Matching (ALM)
	5.3 Optimization
	5.4 Fine-Tuning or Attribute-tuning

	6 EXPERIMENTS
	6.1 Datasets and Experiment design
	6.2 Baselines
	6.3 Evaluation Metrics
	6.4 Text generation task (RQ#1)
	6.5 Ablation analysis (RQ#2)
	6.6 Case study of generated text (RQ#3)
	6.7 Runtime (RQ#4)

	7 DISCUSSION
	8 CONCLUSION
	References

